Optimized inversion recovery sequences for quantitative T1 and magnetization transfer imaging.
نویسندگان
چکیده
Inversion recovery sequences that vary the inversion time (t(i)) have been employed to determine T(1) and, more recently, quantitative magnetization transfer parameters. Specifically, in previous work, the inversion recovery pulse sequences varied t(i) only while maintaining a constant delay (t(d)) between repetitions. T(1) values were determined by fitting to a single exponential function, and quantitative magnetization transfer parameters were then determined by fitting to a biexponential function with an approximate solution. In the current study, new protocols are employed, which vary both t(i) and t(d) and fit the data with minimal approximations. Cramer-Rao lower bounds are calculated to search for acquisition schemes that will maximize the precision efficiencies of T(1) and quantitative magnetization transfer parameters. This approach is supported by Monte Carlo simulations. The optimal T(1) schemes are verified by measurements on MnCl(2) samples. The optimal quantitative magnetization transfer schemes are confirmed by measurements on a series of cross-linked bovine serum albumin phantoms of varying concentrations. The effects of varying the number of sampling data points are also explored, and a rapid acquisition scheme is demonstrated in vivo. These new optimized quantitative imaging methods provide an improved means for determining T(1) and magnetization transfer parameter values compared to previous inversion recovery based methods.
منابع مشابه
The effect of inversion times on the minimum signal intensity of the contrast agent concentration using inversion recovery t1-weighted fast imaging sequence
Background :Inversion recovery (IR) pulse sequences can generate T1-weighted images with a different range of inversion time (TI) to suppress or null the signal intensity (SI) for a specified tissue. In this study, we aimed to investigate the effect of TI values on the concentration of the contrast agent, which leads to a minimum signal intensity, using an inversion recovery T1-weighted 3-dim...
متن کاملThe Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)
Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملInversion in the steady state: contrast optimization and reduced imaging time with fast three-dimensional inversion-recovery-prepared GRE pulse sequences.
PURPOSE To evaluate the differences in contrast between 1-second delay and zero delay (for magnetization recovery) before the preparation radio-frequency pulse in three-dimensional, inversion-recovery (IR) fast gradient-echo (GRE) acquisitions. MATERIALS AND METHODS Mathematical simulations and measurements of brain image contrast were performed with healthy volunteers and 10 patients. RESU...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2010